Model Selection as Point Estimation by Eduardo Gutierrez-Pena

Discussion by Ed George Wharton, University of Pennsylvania

In Honor of Luis Perrichi OBayes 2022, Santa Cruz, CA September 8, 2022

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Model Selection as Point Estimation by Eduardo Gutierrez-Pena

Discussion by Ed George Wharton, University of Pennsylvania

In Honor of Luis Perrichi OBayes 2022, Santa Cruz, CA September 8, 2022

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Happy Birthday Luis!

Model Selection as Point Estimation by Eduardo Gutierrez-Pena

Discussion by Ed George Wharton, University of Pennsylvania

In Honor of Luis Perrichi OBayes 2022, Santa Cruz, CA September 8, 2022

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

M-Closed versus M-Completed

• Different frameworks for performing and evaluating inference

- Which is most common? most realistic?
- Model selection is coherently treated from a Bayesian point of view in the M-Closed framework.
- But can it be coherently treated in the M-Completed framework?

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• As Eduardo shows us, the answer is yes!!!

- Problem Considered: Select an estimator of the true predictive density f(x) based on iid data x = (x₁, x₂,..., x_n) from f(x).
- Suppose it can be assumed that *f*(*x*) belongs to a simple parametric model class

$$\mathcal{F} = \{f(\boldsymbol{x}|\theta) : \theta \in \Theta\}$$

- Some candidates for $\hat{f}(x)$ discussed by Eduardo:
 - $f(x|\hat{\theta}_{ML})$ using no prior
 - $f(x|\phi^0, \mathbf{x}) = \int f(x|\theta) \, p(\theta|\phi^0, \mathbf{x}) \, d\theta$ using $p(\theta|\phi^0)$
 - $f(x|\hat{\theta}_{MAP})$ using $p(\theta|\phi^0)$
 - $\frac{1}{B} \sum_{b=1}^{B} f(x | \tilde{\theta}^{(b)})$ using a WLB sample but no prior

- We are here immediately faced with some Plug-in versus Bayes choices
- Such choices were treated as the Estimative vs Predictive controversy in the early 1970's
- This was largely settled for KL risk from a decision theory point of view by Aitkinson in 1975:
 - $\hat{f}(x) = f(x|\phi^0, \mathbf{x})$ is Bayes and hence best under $p(\theta|\phi^0)$
 - $\hat{f}(x) = f(x|\phi^0, \mathbf{x})$ under the uniform prior dominates the plug-in $\hat{f}(x) = f(x|\hat{\theta}_{ML})$ when all $f \in \mathcal{F}$ are Normal
- Interestingly the WLB predictive $\hat{f}(x) = \frac{1}{B} \sum_{b=1}^{B} f(x|\tilde{\theta}^{(b)})$ converges to $\hat{f}(x) = f(x|\phi^0, \mathbf{x})$ when $p(\theta|\phi^0)$ is the uniform prior.

• Hierarchical elaboration of \mathcal{F} yields larger classes

 $\mathcal{F}^* = \{f^*(\boldsymbol{x}|\phi) : \phi \in \Phi\}$

with $f^*(x|\phi) = \int f(x|\theta) p(\theta|\phi) d\theta$ for hyperparameter ϕ .

- Candidates here for $\hat{f}(x)$ discussed by Eduardo:
 - $f^*(x|\hat{\phi}_{EB}, \mathbf{x})$ using no hyperprior
 - $f^*(\boldsymbol{x}|\lambda^0, \boldsymbol{x}) = \int f^*(\boldsymbol{x}|\phi, \boldsymbol{x}) \, p^*(\phi|\lambda^0, \boldsymbol{x}) \, \mathrm{d}\phi$ using prior $p^*(\phi|\lambda^0)$
 - $f^*(x|\hat{\phi}_{MAP}, \boldsymbol{x})$ using $p^*(\phi|\lambda^0)$
 - $\frac{1}{B}\sum_{b=1}^{B} f^{*}(x|\tilde{\phi}^{(b)}, \mathbf{x})$ using a WLB sample but no hyperprior
- It is still clear that posterior predictive estimates are best under their corresponding priors (from complete class theorems).
- This WLB predictive may well be better than the EB plug-in.

• Further model elaboration of \mathcal{F}^* yields

$$\mathcal{F}^{**} = \{f^{**}(\boldsymbol{x}|\lambda) : \lambda \in \Lambda\}$$

with $f^{**}(x|\lambda) = \int f(x|\theta_{\lambda}, \lambda) p(\theta_{\lambda}|\lambda) d\theta_{\lambda}$ for model λ

• Candidates here for $\hat{f}(x)$ discussed by Eduardo:

•
$$f^{**}(\boldsymbol{x}|\hat{\lambda}_{BF}, \boldsymbol{x})$$
 where $\hat{\lambda}_{BF} = \underset{\Lambda}{\arg\max} f^{**}(\boldsymbol{x}|\lambda)$

•
$$f^{**}(\boldsymbol{x}|\omega^0, \boldsymbol{x}) = \int f^{**}(\boldsymbol{x}|\lambda, \boldsymbol{x}) \, p^{**}(\lambda|\omega^0, \boldsymbol{x}) \, \mathrm{d}\lambda$$
 using $p^{**}(\lambda|\omega^0)$

•
$$f^{**}(x|\omega^0, \mathbf{x}) = \sum_{\lambda=1}^m \omega_\lambda^0(\mathbf{x}) f^{**}(x|\lambda, \mathbf{x})$$
 using $p^{**}(\lambda|\omega^0) = \omega_\lambda$

•
$$f^{**}(\boldsymbol{x}|\hat{\lambda}_{PO}, \boldsymbol{x})$$
 where $\hat{\lambda}_{PO} = \arg \max_{\boldsymbol{\Lambda}} \boldsymbol{p}^{**}(\boldsymbol{\lambda}|\omega^{0}, \boldsymbol{x})$

- $\frac{1}{B} \sum_{b=1}^{B} f^{*}(x | \tilde{\phi}^{(b)}, \mathbf{x})$ using a WLB sample but no model space prior
- Interestingly, WLB provides automatic model weight estimates when the set of models under consideration is discrete. These provide avenues for model averaging and model selection.

 Lastly, the reduction of *F*^{**} to discrete model mixtures is considered

$$\mathcal{F}^{***} = \{ f^{***}(\pmb{x} | \pmb{\omega}) : \pmb{\omega} \in \Omega \}$$

with $f^{***}(x|\omega) = \sum_{\lambda=1}^{m} \omega_{\lambda} f^{**}(x|\lambda)$

• Candidates here for $\hat{f}(x)$ discussed by Eduardo:

•
$$f^{***}(\boldsymbol{x}|\hat{\boldsymbol{\omega}}_{E},\boldsymbol{x})$$
 where $\hat{\boldsymbol{\omega}}_{E} = \operatorname*{arg\,max}_{\Omega} f^{***}(\boldsymbol{x}|\boldsymbol{\omega})$

•
$$f^{***}(\boldsymbol{x}|\hat{\boldsymbol{\omega}},,\boldsymbol{x}) = \sum_{\lambda=1}^{m} \hat{\omega}_{\lambda} f^{**}(\boldsymbol{x}|\lambda,\boldsymbol{x})$$
 where
 $\hat{\boldsymbol{\omega}} = \underset{\Omega}{\arg \max} p^{***}(\boldsymbol{\omega}|\boldsymbol{\alpha}^{0},\boldsymbol{x})$

•
$$f^{***}(x|\alpha^0, \mathbf{x}) = \sum_{\lambda=1}^m E[\omega_\lambda | \alpha^0, \mathbf{x}] f^{**}(x|\lambda, \mathbf{x})$$

 Interesting variations of these predictive estimates obtain with different prior choices for ω.

 Turning now to the M-Completed framework, suppose of interest is a class of parametric predictive distributions

 $\mathbf{F}_{K} = \{f_{\kappa}(\mathbf{X}) : \kappa \in K\}$

such as any of the classes of predictive estimates constructed for $\mathcal{F}, \mathcal{F}^*, \mathcal{F}^{**}, \mathcal{F}^{***}.$

- From the M-Completed perspective, a prior distribution cannot be used to describe the uncertainty surrounding model selection from F_K.
- Indeed, honest acknowledgement of uncertainly here requires a prior that puts probability 1 on

 $\mathbf{F} = \{ F : F \text{ is a probability distribution on } \mathcal{X} \},\$

such as a Dirichlet process prior $F \sim DP(a_0F_0)$.

 Fully respecting this limitation for M-Completed contexts, Eduardo and coauthors have proposed a coherent approach that maximizes expected log utility wrt *F* for selection of *f_κ* ∈ **F**_{*K*}.

(日) (日) (日) (日) (日) (日) (日)

- Their maximum expected utility selection approach for the predictive density problem proceeds as follows.
- The posterior mean of *F* ∼ DP(*a*₀*F*₀), with *a*₀ = 0 for objectiveness, is simply the empirical cdf of *x*, denoted *F*(·).
- The posterior expected utility of any $f_{\kappa} \in \mathbf{F}_{K}$ is then

$$U_n(\kappa) = \int \log f_\kappa(x) \, \mathrm{d}\widehat{F}(x) = rac{1}{n} \sum_{i=1}^n \log f_\kappa(x_i),$$

which is maximized by the same $\widehat{\kappa}$ that maximizes

$$\prod_{i=1}^n f_{\kappa}(x_i).$$

• Notice that this $\hat{\kappa}$ minimizes the KL distance from $f_{\kappa} \in \mathbf{F}_{K}$ to \hat{F} .

 Illustrating the potential of this approach, Eduardo considers the class of model averaged predictive estimates of the form

$$f_{\omega}(x) = \sum_{j=1}^{m} \omega_j f_j(x|\boldsymbol{x})$$

where each $f_j(\boldsymbol{x}|\boldsymbol{x}) = \int f_j(\boldsymbol{x}|\theta_j) \pi_j(\theta_j|\boldsymbol{x}) d\theta_j$ is obtained with a posterior reference prior.

$$\prod_{i=1}^n f_{\omega}(x_i) = \prod_{i=1}^n \sum_{j=1}^m \omega_j f_j(x_i|\boldsymbol{x}).$$

 Note that this strategy is providing an automatic and coherent approach to selection of the averaging weights.

- Overall, it seems clear that the ultimate effectiveness of this M-Complete strategy rests on the quality of the predictive densities that comprise the parametric class F_K of interest.
- Thus, Eduardo is exactly right to emphasize the importance of the construction of the classes of surrogate predictive densities to be considered.
- In this regard, his development of the wide varieties of predictive estimates for the classes *F*, *F**, *F***, *F****, is a generous master class in how we might proceed forward with these constructions.

Congratulations Eduardo!

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Happy Birthday Luis!

